PSINET: Assisting HIV Prevention Amongst Homeless Youth by Planning Ahead
نویسندگان
چکیده
Homeless youth are prone to Human Immunodeficiency Virus (HIV) due to their engagement in high risk behavior such as unprotected sex, sex under influence of drugs, etc. Many non-profit agencies conduct interventions to educate and train a select group of homeless youth about HIV prevention and treatment practices and rely on word-of-mouth spread of information through their social network. Previous work in strategic selection of intervention participants does not handle uncertainties in the social network's structure and evolving network state, potentially causing significant shortcomings in spread of information. Thus, we developed PSINET, a decision support system to aid the agencies in this task. PSINET includes the following key novelties: (i) it handles uncertainties in network structure and evolving network state; (ii) it addresses these uncertainties by using POMDPs in influence maximization; and (iii) it provides algorithmic advances to allow high quality approximate solutions for such POMDPs. Simulations show that PSINET achieves ~60% more information spread over the current state-of-the-art. PSINET was developed in collaboration with My Friend's Place (a drop-in agency serving homeless youth in Los Angeles) and is currently being reviewed by their officials.
منابع مشابه
PSINET - An Online POMDP Solver for HIV Prevention in Homeless Populations
Homeless youth are prone to Human Immunodeficiency Virus (HIV) due to their engagement in high risk behavior such as unprotected sex, sex under influence of drugs, etc. Many non-profit agencies conduct interventions to educate and train a select group of homeless youth about HIV prevention and treatment practices and rely on word-of-mouth spread of information through their social network. Prev...
متن کاملForming Teams of Homeless Youth To Combat HIV Spread
Homeless youth are prone to HIV due to their engagement in high risk behavior. Many agencies conduct interventions to educate/train a select group of homeless youth about HIV prevention practices. These trained youth form a team whose goal is to maximize spread of HIV based information in their social network. This team of humans usually relies on word-of-mouth information spread to maximize th...
متن کاملPreventing HIV Spread in Homeless Populations Using PSINET
Homeless youth are prone to HIV due to their engagement in high risk behavior. Many agencies conduct interventions to educate/train a select group of homeless youth about HIV prevention practices and rely on word-of-mouth spread of information through their social network. Previous work in strategic selection of intervention participants does not handle uncertainties in the social network’s str...
متن کاملPilot Testing an Artificial Intelligence Algorithm That Selects Homeless Youth Peer Leaders Who Promote HIV Testing
Objective. To pilot test an artificial intelligence (AI) algorithm that selects peer change agents (PCA) to disseminate HIV testing messaging in a population of homeless youth. Methods. We recruited and assessed 62 youth at baseline, 1 month (n = 48), and 3 months (n = 38). A Facebook app collected preliminary social network data. Eleven PCAs selected by AI attended a 1-day training and 7 weekl...
متن کاملPOMDPs for Assisting Homeless Shelters - Computational and Deployment Challenges
This paper looks at challenges faced during the ongoing deployment of HEALER, a POMDP based software agent that recommends sequential intervention plans for use by homeless shelters, who organize these interventions to raise awareness about HIV among homeless youth. HEALER’s sequential plans (built using knowledge of social networks of homeless youth) choose intervention participants strategica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AI magazine
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2016